@) =) \@ =8 ACADEMY

Java Fundamentals

7-1
Classes, Objects, and Methods

(@») =) \al =3l ACADEMY

Copyright ® 2017, Oracle and/or its affiliates. All rights reserved

Objectives

This lesson covers the following objectives:

Recognize the correct general form of a class

Create an object of a class

Create methods that compile with no errors

Return a value from a method

* Use parameters in a method

Create a driver class and add instances of Object classes

(@) =):\al =4l ACADEMY ;:;:

CIasses,Objects,and Methods Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 3

Objectives

This lesson covers the following objectives:

Add a constructorto a class

Apply the new operator

Describe garbage collection and finalizers

Apply the this reference

Add a constructor to initialize a value

(@) =):\al =4l ACADEMY ;:;:

, Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 4
Classes, Objects, and Methods S 4 =

Creating a Class Template

* Programmers can create their own classes.

* Classes are essentially a template or blueprint for all
instances of the class.

* The class code also communicates tothe compiler how to
define, create, and interact with objects of the class.

* The code on the following slide starts to create the Class
Vehicle which will represent the basic outline for Vehicle
objects.

ORACLE" LULL L SR
. : S : 5
Claees Objects, and Methads Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Creating a Class Template Example

public class Vehicle {
// the Vehicle class has two fields
private String make;
private int milesPerGallon;

//constructor
public Vehicle(){
}
//mutator/setter method
public void setMake(String m){
make = m;
}
//mutator/setter method
public void setMilesPerGallon(int mpg){
milesPerGallon = mpg;

//accessor/getter method
public String getMake(){
return make;
}
//accessor/getter method
public int getMilesPerGallon(){
return milesPerGallon;

¥
¥
(@ EV @ M ACADEMY jr71

Classes, Objects, and Methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved

6

Creating an Instance of a Class

* Once you have created a class, you can create instances of

the class (objects)in a Driver Class or inside other Object
Classes.

* |nstances:

— Inherit all attributes and methods defined in the class template.
— Interact independently of one another.
— Are reference objects.

— Are created using the new operator.

(@) =):\al =4l ACADEMY ;:;:

S Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 7
Classes, Objects, and Methods S foe} o i

Like with Strings, references store the address of the object. (Of course, Strings are objects.)

Instantiate an Instance

* To instantiate an instance of a Vehicle called myCar, write:

public class VehicleTester{
public static void main(String[] args){
Vehicle myCar = new Vehicle();
}

In Java, instantiation is the creation of objects from a class.

A 3§ ACADEMY :
OR CL—E JF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved

Classes, Objects, and Methods

8

Constructors

Constructors are methods that
allow the user to create instances of
(instantiate) a class.

Good programming practice
dictates that classes should have a
default constructor.

Constructors which contain
parameters typically initialize the
private variables of the class to
values passed in by the user.

Constructorsdo not have a return
type (void or other).

(@ =y M ACADEMY jr7.1 .
Classes, Objects, and Methods Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 9

Constructors do not have a return type because they return a new object of that class.

Default Constructor

* Good programming practice dictates that classes should have
a default constructor.

* A default constructor:
— Takes no parameters.
— Typically initializes all private variables to base values.

public Vehicle() {

make = 3
milesPerGallon = 0;

(@) =7-Val =4l ACADEMY ;-7

, Copyright © 2017, Oracle and/or its affiliates. All rights reserved 10
Classes, Objects, and Methods i = -

Constructor with Parameters

* A constructor with parameters is used when you want to
initialize the private variables to values other than the default
values.

public Vehicle(String m, int mpg){

make=m; .
milesPerGallon=mpg; w

Parameters are variables that are listed as part of a method (or
constructor) declaration. In the example above, String m and int mpg
are parameters. Values are given to the parameters when a call to the
method or constructor is made.

ORACLE" LULL L SR
. . < : 1
Claees Objects, and Methads Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Instantiate Vehicle Instance

* To instantiate a Vehicle instance using the constructor with
parameters, use arguments: P —

Vehicle myCar = new Vehicle("Toyota", 30);

* To instantiate a Vehicle instance using the default constructor,
write:

Vehicle myCar = new Vehicle();

(@ EV @ M ACADEMY jr71 _ , .
Copyright © 2017, Oracle and/or its affiliates. All rights reserved 12

Classes, Objects, and Methods

Defining Methods

* A method is a block of code which is referred to by name and
can be called at any point in a program simply by utilizing the
method's name. There are four main parts to defining your
own method:

— Access Modifier (public, private, protected, default)
— Return type

— Method name

— Parameter(s)

public returnType methodName(Parameter p, ..)

/*code that will execute with each call to the
method goes here*/

}

(@») il ACADEMY “
RAC LE - St Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 13

Classes, Objects, and Methods

The default access modifier is indicated via the absence of public, private, or protected. Do not use the
word default.

Methods (and classes) generally will have the public access modifier. Non-constant fields will generally
have the private access modifier.

Components of a Method

* Method componentsinclude:
— Return type:

* This identifies what type of object, if any, will be returned when the method
is invoked (called).

* If nothing will be returned, the return type is declared as void.
— Method name:

» Used to make a call to the method.

(@) =J\@ M3 ACADEMY -7

R Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 14
Classes, Objects, and Methods ke / -

Components of a Method

* Parameter(s):

— The programmer may choose to include parameters depending on the
purpose and function of the method.

— Parameters can be of any primitive or type of object, but the
parameter type used when calling the method must match the
parameter type specified in the method definition.

ORA 3§ ACADEMY :
IQ CLE IF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 15

Classes, Objects, and Methods

Method Components Example

Return type Name of method Parameters

public String getName(String firstName, String lastName)

return(firstName + " " + lastName);

}

(@ EV @ M ACADEMY jr71 _ ,
Copyright © 2017, Oracle and/or its affiliates. All rights reserved

Classes, Objects, and Methods

16

Class Methods

Every class will have a set of methods associated with it which
allow functionality for the class.

Accessor method
— "getter"
— Returns the value of a specific private variable.

Mutator method
— "setter"

— Changes or sets the value of a specific private variable.

Functional method
— Returns or performs some sort of functionality for the class.

(@) =J\@ M3 ACADEMY -7

R Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 17
Classes, Objects, and Methods ke / ! -

Accessor Methods

Accessor methods access and return the value of a specific
private variable of the class.

* Non-void return type corresponds to the data type of the
variable you are accessing.

* Include a return statement.
* Usually have no parameters.
public String getMake(){

return make;

}

public int getMilesPerGallon(){
return milesPerGallon;
}

(@) =7-Val =4l ACADEMY ;-7

Classes, Objects, and Methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved 18

Mutator Methods

* Mutator methods set or modify the value of a specified
private variable of the class.

* Void return type.
* Parameter with a type that correspondsto the type of the
variable being set.

public void setMake(String m){
make = m;
}

public void setMilesPerGallon(int mpg){
milesPerGallon = mpg;
}

OR CLG. ACADEMY F7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 19
Classes, Objects, and Methods it bl i - RS

Mutator methods may also have additional code to test or modify the parameters. For example, there
could be another setMilesPerGallon method that has a double parameter. The method body could add 0.5
and then cast the value to an int and assign it to the field.

Functional Methods

* Functional methods perform a functionality for the class.

* Void or non-void return type.

* Parameters are optional and used depending on what is
needed for the method's function.

OR CLG. PN iF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserve
Classes, Objects, and Methods bttt i 2l P

Functional Methods

* Below is a functional method for the class Vehicle that
compares two vehicles and returns an int value for the
comparison.

//Compares the miles per gallon of each vehicle passed in, returns 0 if
they are the same, 1 if the first vehicle is larger than the second and -1
if the second vehicle is larger than the first*/

public int compareTo(Vehicle v1, Vehicle v2){
if(vi.getMilesPerGallon()= = v2.getMilesPerGallon())
return 0;
if(vl.getMilesPerGallon()> v2.getMilesPerGallon())
return 1;
return -1;

(@) =7-Val =4l ACADEMY ;-7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved 21
Classes, Objects, and Methods Pree - e

Using Constructors and Methods in a
Driver class main method Example

* For the following:
— What functionality does each line have?
— What will the final print statement print to the screen?

public class VehicleTester{
public static void main(String[] args){

Vehicle v;
v=new Vehicle();
v.setMake("Ford");
v.setMilesPerGallon(35);

System.out.print("My "+v.getMake() +
" gets " + v.getMilesPerGallon() + " mpg.");

ORACLG ACADEMY JF71 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 22

Classes, Objects, and Methods

this Reference

Within an instance method or a constructor, this is a
reference to the current object.

The reference to the object whose method or constructor is
being called.

Refer to any member of the current object by using this.

Most commonly used when a field is shadowed by a method
or constructor parameter of the same name.

ORA 3§ ACADEMY :
R CLe e Copyright ©® 2017, Oracle and/or its affiliates. All rights reserved. 23

Classes, Objects, and Methods

this Reference Example

* When a method argument "shadows" a field of the object,
the this reference is used to differentiate the local scope from
the class scope.

public class Point {
private int x;
Private int y;

//constructor

public Point(int x, int y) {
this.x = x;
this.y = y;

il ACADEMY g
ORACI—G C JF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 24

Classes, Objects, and Methods

Card Class Example

* Consider a standard deck of playing cards.

* To represent each card as an instance of a Card class, what
attributes would the class need to have?
— Suit
— Name
— Points

public class Card {
private String suit;
private String name;
private int points;

(@) =7-Val =4l ACADEMY ;-7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved 25
Classes, Objects, and Methods Pree - e

Reference Object Representation

* When creating a new instance of an object, a referenceiis
made to the object in memory.

* The reference points to the object.

* All attribute variables are created and initialized based on the
constructor used.

Card ¢ = new Card();

suit = null
name= null
points =0

ORACLE. ACADEMY JF71 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 26
Classes, Objects, and Methods G : = i

Understanding Garbage Collection Example

* Considering the code below, what will happen in memory
afterthelinec2=c;?

* When executed, c2 = c; takes the reference c2 and makes it
reference the same object as c.

* This effectively renders the original object c2 useless, and
garbage collection takes care of it by removing it from

.

Card c=new Card("Diamonds","Four", 4); ‘

Card c2=new Card("Spades","Ace", 1);
c2 = c; P

AL

-
)

(@) =J\@ M3 ACADEMY -7

R Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 27
Classes, Objects, and Methods ke / ! -

Finalizers

* A finalizer is code called by the garbage collector when it
determines no more references to the object exist.

* All objects inherit a finalize() method from java.lang.Object.

* This method takes no parameters and is written to perform
no action when called.

ORACLE. ACADEMY JF71 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 28
Classes, Objects, and Methods G : = i

Finalizers

* Overriding the finalize() method in classes allows you to
modify what happens before garbage collection, such as:
— Notifying the user about the garbage collection that is about to occur.
— Cleaning up non-Java resources, such as closing a file.

(@) =J\@ M3 ACADEMY -7

R Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 29
Classes, Objects, and Methods ke / -

Finalize Method Example

* This is an example of the finalize() method overridden in a
class. It closes all associated files and notifies the user that
the finalization occurs.

protected void finalize(){

try{
close(); //close all files

¥
finally{
System.out.println("Finalization has occured");

¥
¥

ORACLG. ACADEMY JF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 30
Classes, Objects, and Methods L ' " e

Terminology

Key terms used in this lesson included:

* Accessor method

Class

Constructor

Finalizers

Garbage collection

Initialization

Instantiate

Method

(@) =Ja\@ M3 ACADEMY sy

Classes, Objects, and Methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved

31

Terminology

Key terms used in this lesson included:

Mutator method

* new
Null
Object

Reference

this Reference

ORACLG. ACADEMY JF7-1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 32
Classes, Objects, and Methods i : e

Summary

In this lesson, you should have learned how to:

* Recognize the correct general form of a class

Create an object of a class

Create methods that compile with no errors

Return a value from a method

* Use parameters in a method

Create a driver class and add instances of Object classes

(@») il ACADEMY “
RACLE - St Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 33

Classes, Objects, and Methods

Summary

In this lesson, you should have learned how to:

* Add a constructorto a class

Apply the new operator

Describe garbage collection and finalizers

Apply the this reference

Add a constructor to initialize a value

OIQACLE. ACADEMY JF71 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 34
Classes, Objects, and Methods G : = i

@) =) \@ =8 ACADEMY

