@)| =J-Nal =3 ACADEMY

Java Fundamentals

7-2
Parameters and Overloading Methods

(@ 7X@l M ACADEMY
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Objectives

This lesson covers the following objectives:

* Use access modifiers

Pass objects to methods

Return objects from methods

Use variable argument methods

Overload constructors

Overload methods

Write a class with specified arrays, constructors, and methods

(@ | =V M8 ACADEMY ;75

: Copyright @ 2017, Oracle and/or its affiliates. All rights reserved. 3
Parameters and Overloading Methods e / -

Access Modifiers

* Access modifiers specify accessibility to changing variables,
methods, and classes.

* There are four access modifiers in Java:

Access Modifier Description
public Allows access from anywhere.

Allows access only from inside the same class,
protected from a subclass, or from other classes of the
same package as the modifier.

Allows access only from inside the same class as

penisite the modifier.

Allows access from only inside the same class, or
"default" (not specified/blank) from other classes of the same package as the
modifier.

il ACADEMY =
ORAC l—e C JF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 4

Parameters and Overloading Methods

public Access Modifier

* public access modifiers allow access from anywhere.

* In Java, adding the keyword public as the variable, method, or
class is declared, makes the variable, method, or class
accessible from anywhere.

(@ =JaN@ M ACADEMY 7.

Parameters and Overloading Methods

Classes and methods are usually public.

Declaring as public

* The code below shows how to declare a variable, method, or
class as public.
— Variable:

public int milesRan = 2;//public access
int timePassed = 17;//access not specified

— Method:
public int addMiles(int a, int b)
{
return a+b;
}

— Class:

public class Jogging{
//class code here
}

(@ =V @ Ml ACADEMY jr7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved
Parameters and Overloading Methods = e : A

6

Local variables never have an access modifier. Only instance variables use access modifiers.

protected and "default” Access Modifiers

A protected access modifier allows access inside the class,
subclass, or other classes of the same package as the
modifier.

* To declare a variable, method, or class as protected, write the
keyword protected rather than public.

* A "default" access modifier allows access from inside the
same package only.

* To declare a variable, method, or class as "default," do not
include an access modifier.

(@ | =V M8 ACADEMY ;75

- Copyright ©@ 2017, Oracle and/or its affiliates. All rights reserved. 7
Parameters and Overloading Methods ke Yor les il i

A common mistake new Java programmers make is to not specify an access modifier and thus get the
default.

private Access Modifier

* A private access modifier:
— Only allows access from inside the same class.
— Is the most restrictive access modifier.

— Is the opposite of the public access modifier.

private int bankAccountNumber;

(@ =V @ Ml ACADEMY jr7

. Copyright © 2017, Oracle and/or its affiliates. All rights reserved 8
Parameters and Overloading Methods = =

Fields are usually private.

When to Use public or private

Type Definition When to Use
When it does not matter that
ublic Allows access from anyone can access your code or
P anywhere. when you wish to share your

code with others.

When it is important that your
Allows access only from code is secure and cannot be
inside the same class. accessed from anywhere but
inside the class itself.

private

g ACADEMY 1
ORACI—G IF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 9

Parameters and Overloading Methods

Objects as Parameters

* A parameter is a variable in a method declaration that is
passed to the method.\

public int method(int parameterl, int parameter2)

* Parameter types are the type of parameters that can be
passed to a method. This includes:
— Primitive types (such as int, double, char)
— Objects
* String
* Array

public int method(int anInt, double aDouble, String aString, MyClassName anObjectOfMyClass)

(@) =J-\al =4 ACADEMY : ;.

= Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 10
Parameters and Overloading Methods s 4 =

It makes no difference if the object is from an API class or if it is from a user created class.

Objects as Parameters Example

* An employer has an opening for a promotion for one of his
employees.

* He wishes to create a method that will take in an employee as
a parameter and calculate and return the employee's rating
based on their qualifications for the new position.
public int promotion(Employee E){

int timeEmployed = E.getLengthOfEmployment();

//do some calculations to set a rating for E
return rating;

(@) 3§ ACADEMY :
RAC Le £ 72 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 11

Parameters and Overloading Methods

Passing Objects as Parameters

* Passing objects as parameters allows for much easier access
to the information that the object contains.

* It also permits making changes to objects inside of the
method, and even allows for comparing two objects that
cannot use primitive comparing methods.

(@) = N M= ACADEMY :7.
i i i i . 12
Bardernnd Overloading Methods Copyright © 2017, Oracle and/or its affiliates. All rights reserved

Returning Objects

* Writing a method that returns an object is very similar to
writing a method that returns a primitive type.

* For example, the employer from the previous example just
learned that methods can return an object.

* To make it easier to find the employee to promote, he can
write a method that takes in two employees.

* The method returns the one that has a better rating.

* This is easier than going through each employee, retrieving
each of their ratings, and then comparing them.

g ACADEMY 1
OQAC'—E IF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 13

Parameters and Overloading Methods

Returning Objects Example

* Employee identifies what is being returned.

To return an object, simply
write the object type here.

V

public Employee promotion(Employee A, Employee B){
//calculate to compare which employee is better
//if employee A is better
return A;
//if employee B is better
return B;

3§ ACADEMY =
ORACLG C JF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 14

Parameters and Overloading Methods

Variable Argument Methods

* Avariable argument method:
— |Is a method written to handle a variable number of arguments.

— Only works if you call the method with the same type of argument as
the method requires.

* A variable argument method looks like this:

public int total(int ... nums){
int sum = @;
for(int i = @; i < nums.length; i++)
sum += nums[i];
return sum;

.
A ACADEMY -
OR Cl_e JF7-2 Copyright @ 2017, Oracle and/or its affiliates. All rights reserved. 15

Parameters and Overloading Methods

Variable Argument Methods Example

* For example, a method initialized with a variable argument of
integers cannot be called with any number of Strings, but can
only be called with any number of integers for the argument.

* If another method is declared with a variable argument of
Strings, they must call that method with String(s) to meet the

arguments.

OQAC'—E ACADEMY IF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 16
Parameters and Overloading Methods J ‘ '

Why not use Arrays in Variable Argument

Methods?

* Why not just use an array?

* In a program, you must know the number of elements in an
array to create one. If the number of elements changes, you
would need a different array for each different length.

* Using a variable argument method allows for use of the
method without ever having to initialize an array.

* It also allows for multiple uses with a variable number of

elements.

(@ | =V M8 ACADEMY ;75

Parameters and Overloading Methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 17

Variable Argument Methods and Integers

* Does a variable argument method only work with integers?

* No, the variable argument works with any primitive type,
object, and even arrays.

* You can have a variable argument of arrays.

(@) 3§ ACADEMY :
RAC Le £ 72 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 18

Parameters and Overloading Methods

Employee Example

* To determine employee promotions, the employer was
coding a method that compared two employees and returned
the bestone.

* Now that the employer has the method to compare the
employees, he needs a way to compare all the employees at
once instead of only comparing two at a time.

* This is where variable arguments would help.

(@) =)-\el =4l ACADEMY ;:;.

= Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 19
Parameters and Overloading Methods S / ! i

Variable Argument Employee Example
Code

* Code to compare all employees:

public Employee promotion(Employee ... employees){
Employee bestCandidate

= employees[0@];
//go through the list of employees and calculate

//which one is the best candidate
for(int i = 1; i < employees.length; i++){
//if there is a candidate better than the current best
if(employees[i].getRating > bestCandidate.getRating){
//update the bestCandidate to the better one
bestCandidate = employees[i];
¥

}

//return the best candidate found for the promotion
return bestCandidate;

¥
(@ | =J:Vel =3 ACADEMY

JF7-2

Copyright ©@ 2017, Oracle and/or its affiliates. All rights reserved. 20
Parameters and Overloading Methods e N

Calling a Method with Variable Arguments

* Calling a method with variable arguments is like calling any
other method.

* However, it can be called with a different number of
arguments each time it is called.

(@) =)-\el =4l ACADEMY ;:;.

= Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 21
Parameters and Overloading Methods S / ! i

Calling a Method with Variable Arguments

* The code below demonstrates this idea. Sam, Erica, Dominic,
Sandy, and Jake are employees.

* The employer is looking to promote either Sam, Erica, or
Dominic to manager and Sandy or Jake to assistant manager.

//This compares Sam, Erica, and Dominic and assigns

//the best candidate of the 3 to newManager.
Employee newManager = promotion(sam, erica, dominic);

//This compares Sandy and Jake and assigns the better

//of the 2 to newAssistantManager
Employee newAssistantManager = promotion(sandy, jake);

l?(I e ACADEMY JF7-2
P 1 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 22

Overloading Constructors

* Constructors assign initial
values to instance variables of
a class.

* Constructorsinside a class are
declared like methods.

* Overloading a constructor
means having more than one
constructor with the same
name but different types
and/or numbers of arguments.

(@) =J-\al =4 ACADEMY : ;.

Parameters and Overloading Methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved 23

Overloading Constructors Example 1

* This example overloads the public constructor of a Dog class.

public class Dog{
public Dog(){...implementation...}
public Dog(int weight){...implementation...}
public Dog(String barkNoise){...implementation...}
public Dog(int weight, int loudness, String barkNoise){...implementation...}

}

ORACLE" ETIUL LN _ »
Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 24

Parameters and Overloading Methods

How Overloading Constructors Works

* Overloading constructors works as follows:
— Javareads the constructor based on what arguments are passed into it.

— Once it identifies the constructor name, it will compare the argument
types.

— If the argument types do not match the first constructor of that name,
it will proceed to the second, third, and so on until it identifies a
constructor name and argument type match.

— If it does not find a match, then the program will not compile.

g ACADEMY 1
OQAC'—E IF7-2 Copyright ® 2017, Oracle and/or its affiliates. All rights reserved. 25

Parameters and Overloading Methods

Overloading Constructors Example 2

public class Dog{
private int weight;
private int loudness;
private String barkNoise;

public Dog(){
weight = 12;
loudness = 4;

barkNoise = "Woof";

)]

public Dog(int w, int 1){ This is a constructor that specifies
weight = w; the dog's weight and

loudness = 1;

loudness in the arguments.
barkNoise = "ARF!";

}
public Dog(int w, int 1, String bark) o B
weight = w; This is a constructor that specifies
loudness = 1; the dog's weight, loudness, and bark
barkNoise = bark; noise in the arguments.

ORACLG ACADEMY JF7-2 Copyright © 2017, Oracle and/or its affiliates. All rights reserved 26

Parameters and Overloading Methods

Overloading Constructors Example 2
Explained

* Dog() is the default constructor.
* A default constructor has no arguments.

* If you initialized a Dog object using this constructor, it would
have a weight of 12, a loudness of 4, and a bark noise of
"woof".

* The last two constructorsin the Dog class allow the
assignment of instance variables to differ according to
specifications during initialization.

(@) =)-\el =4l ACADEMY ;:;.

= Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 27
Parameters and Overloading Methods S / ! i

Overloading Constructors Example 2
Explained

* Although the default Dog constructor has code to initialize

the class variables, it is optional for a default constructorto
have code.

* |f the default constructordoes not have code, the class
variables are initialized with:

— null for objects

— 0 (zero) for primitive numeric types
— false for boolean

(@ | =V M8 ACADEMY ;75

- Copyright ©@ 2017, Oracle and/or its affiliates. All rights reserved. 28
Parameters and Overloading Methods e / eh

Overloading Constructors Example 2
Explained

* If a constructoris not written for a class, the default
constructor (with no code) is supplied by the JVM.

* If there is not a default constructorwritten, and there are
one or more other constructors, the JVM will not supply a
default constructor.

C)RACI—G ACADEMY JF7-2 Copyright ©@ 2017, Oracle and/or its affiliates. All rights reserved. 29
Parameters and Overloading Methods S ’ S '

Take note of the 2nd bullet point, as it is frequently overlooked

Overloading Methods

* Like overloading constructors, overloading a method occurs
when the type and/or number of parameters differ. Below is
an example of a situation where a method would need to be
overloaded. Create the Dog class, then create an instance of
Dog in a Driver Class. Call (use) both bark() methods.

public class Dog{
private int weight;
private int loudness;
private String barkNoise;

public void bark(String b){
System.out.println(b);

public void bark(){
System.out.println("Woof");
h
}

IQ(l e ACADEMY JF7-2
Copyright © 2017, Oracle and/or its affiliates. All rights reserved 30
Parameters and Overloading Methods ‘ : ! oS 2 o '

A common mistake is to attempt to overload a method by only changing the return type. Overloading
methods only involves changing the parameter types and the number of parameters.

Terminology

Key terms used in this lesson included:

* Access modifier

Constructor

Default constructor

Overloading

Private access modifier

Public access modifier

Variable argument method

(@ | =V M8 ACADEMY ;75

Parameters and Overloading Methods

Copyright @ 2017, Oracle and/or its affiliates. All rights reserved.

31

Summary

In this lesson, you should have learned how to:
* Use access modifiers

* Pass objects to methods

Return objects from methods

Use variable argument methods

Overload constructors

Overload methods

Write a class with specified arrays, constructors, and methods

(@ | =V M8 ACADEMY ;75

. Copyright @ 2017, Oracle and/or its affiliates. All rights reserved. 32
Parameters and Overloading Methods e / -

@)| =J-Nal =3 ACADEMY

