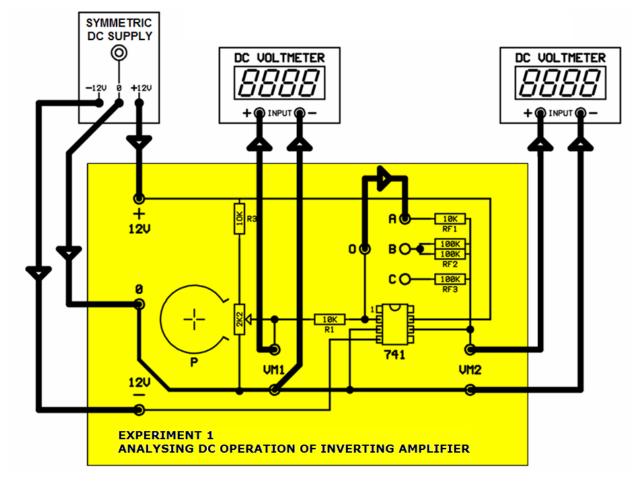
# **ELECTRONICS LABORATORY**

# **PART 10 EXPERIMENTS**

Assoc. Prof. Serhan Yarkan


**ISTANBUL COMMERCE UNIVERSITY** 

# CONTENTS

| EXPERIMENT 10.1                                                                      | .2 |
|--------------------------------------------------------------------------------------|----|
| ANALYZING DC OPERATION OF OPERATIONAL AMPLIFIERS                                     | 2  |
| EXPERIMENT 10.2                                                                      | .4 |
| MEASURING OUTPUT OFFSET VOLTAGE OF OPERATIONAL AMPLIFIERS                            | 4  |
| EXPERIMENT 10.3                                                                      | 5  |
| MEASURING THE INPUT BIAS CURRENT OF OPERATIONAL AMPLIFIERS                           | 5  |
| EXPERIMENT 10.4                                                                      | 6  |
| MEASURING THE INPUT OFFSET CURRENT AND INPUT OFFSET VOLTAGE CONTRACTIONAL AMPLIFIERS |    |

## **EXPERIMENT 10.1** ANALYZING DC OPERATION OF OPERATIONAL AMPLIFIERS

**EXPERIMENTAL PROCEDURE:** Plug the Y-0014/01 module. Make the circuit connections as shown in the figure.



- 1- Apply power to the circuit.
- 2- Adjust the input voltage to values (VM1) given in Table 1 by using potentiometer P. Take note of the output voltage (VM2) in each step.

| VM1 (Volt) | VM2 (Volt) |
|------------|------------|
| 0,200      |            |
| 0,400      |            |
| 0,600      |            |

| Table | 1 |
|-------|---|
|-------|---|

3- What is the polarity of the output? Why?

#### NOTE: Do not consider the sign of the output signal.

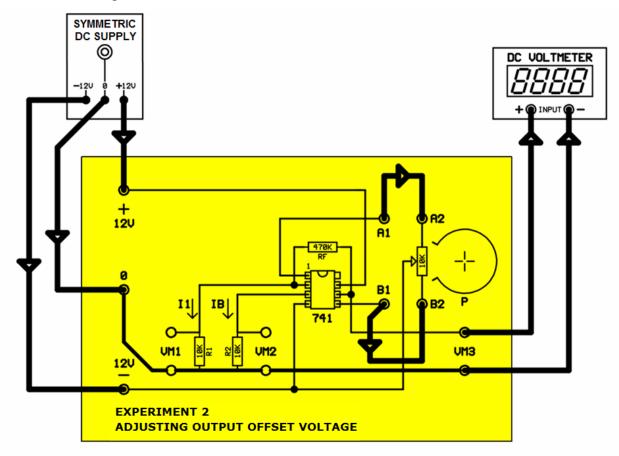
5- What does the gain of the inverting amplifier depend on?

**6-** Open the short circuit O-A and short circuit O-B. Take note of the output voltages for the inputs given in the 2nd step.

| VM1 (Volt) | VM2 (Volt) |
|------------|------------|
| 0,200      |            |
| 0,400      |            |
| 0,600      |            |

Table 2

7- Calculate the gain of the circuit?


**8-** Does the equation  $A = \frac{RF2}{R1}$  satisfy the gain?

9- Does the operational amplifier operate as DC amplifier?

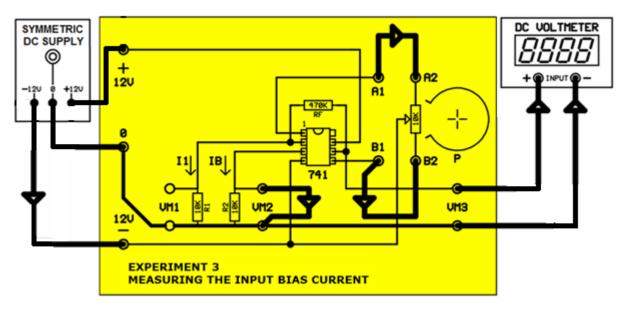
**10-** How should the supply be when the operational amplifier is operating as an DC amplifier?

## **EXPERIMENT 10.2** MEASURING OUTPUT OFFSET VOLTAGE OF OPERATIONAL AMPLIFIERS

**EXPERIMENTAL PROCEDURE:** Plug the Y-0014/01 module. Make the circuit connections as shown in the figure.



1- Apply power to the circuit.


2- Set the middle pin o the potentiometer P1 to upper position. Measure the offset voltage.

3- Set the middle pin o the potentiometer P1 to down position. Measure the offset voltage.

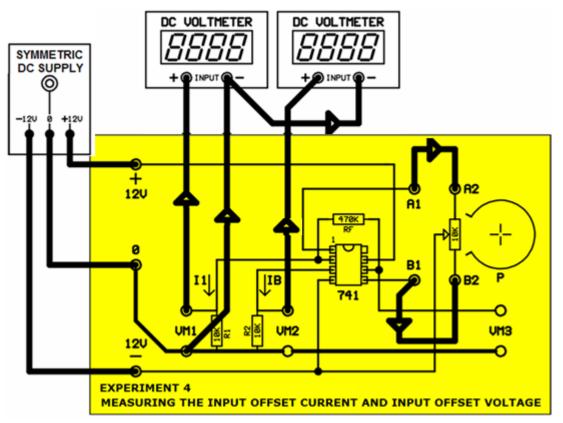
4- Adjust the potentiometer P1. Set the output offset voltage to zero. Explain that operation of the circuit.

# **EXPERIMENT 10.3** MEASURING THE INPUT BIAS CURRENT OF OPERATIONAL AMPLIFIERS

**EXPERIMENTAL PROCEDURE:** Plug the Y-0014/01 module. Make the circuit connections as shown in the figure.



- **1-** Apply power to the circuit.
- 2- The voltage at VM3 changes in a wide range while the middle pin of the potentiometer P is at the down or upper position. In order to understand the experiment set the voltage at VM3 to 75mV.
- 3- What is that voltage measured at step 2? Why is it created?


4- Open the short circuit with resistance R2 and measure the output offset voltage.

5- Why did the output offset voltage decrease?

6- Calculate the input bias current (IB)?

## **EXPERIMENT 10.4** MEASURING THE INPUT OFFSET CURRENT AND INPUT OFFSET VOLTAGE OF OPERATIONAL AMPLIFIERS

**EXPERIMENTAL PROCEDURE:** Plug the Y-0014/01 module. Make the circuit connections as shown in the figure.



- 1- Apply power to the circuit. Set P potentiometer value "0" at VM3
- **2-** Read the values at VM1 and VM2.

**3-** Calculate the currents I1 and IB?

4- Calculate the input offset current (IiO).

5- Calculate output offset voltage created by the input offset current.

6- Calculate the input offset voltage (ViO).

7- What is the effect of the resistance RF on the input impedance?

8- Take Scope2 to terminals of Scope3. Again short the points O-A. Measure the output voltage.

**9-** Short the points D-E. Adjust the potentiometer P2. Set the output voltage half of its value. Open the points D-E and measure the resistance between the points O-E.

10- What does this resistance value correspond to?

**11-** Open the short circuit between the points O-A. Short the points O-B. Measure the output voltage.

**12-** Short the points D-E. Adjust the potentiometer P2. Set the output voltage half of its value. Open short circuit between the points D-E and measure the resistance between the points O-E.

13- Does the resistance RF affect the output impedance?

14- Short the output pins (terminals of Scope3) via an ampermeter (1mA). Read the current value.

**15-** Short the output terminals. Does the system operate normally? What does this mean?