ELECTROTECHNICH LAB.

PART 4 EXPERIMENTS

Yrd. Doç. Dr. Taha İMECİ

Arş. Gör. Ezgi YAMAÇ

Arş. Gör. Ufuk ŞANVER

İSTANBUL COMMERCE UNIVERSITY

Contents

EXPERIMENT 17.1	2
EXAMINATION OF RL SERIES AC CIRCUIT	
EXPERIMENT 17.2	
EXAMINATION OF RC SERIES AC CIRCUIT	_
EXPERIMENT 17.3	
EXAMINATION OF RLC SERIES AC CIRCUIT.	_

EXPERIMENT 17.1

EXAMINATION OF RL SERIES AC CIRCUIT

REQUIRED MATERIAL:

- **1-** Function Generator
- **2-** Oscilloscope (**two channeled**)
- **3-** AC voltmeter
- **4-** AC ampermeter
- **5-** Y-0016/01AC module
- **6-** Enough connection cable

THE EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to $\mathbf{Epp}=10\text{Volt}$ and frequency to $\mathbf{F}=1\text{KHz}$. Connect the Y-0016/01AC module to its place. Short-circuit the $\mathbf{J3}$. Make the circuit connections as in the figure 16.5. Apply the power to the circuit.

Figure 16.5

1- What is the effect of short-circuiting the J3 points?

2- What can be said about the circuit looking at the vector diagram on the oscilloscope?
3- Calculate the inductive reactance of the inductor.
$XL = 2\pi FL$
4- Short circuit the CH2 points so that the " R1 " resistor will not affect the circuit. Calculate the total resistance of the circuit.
5- Calculate the circuit impedance
$Z^2 = RT^2 + XL^2$
6- Calculate the circuit current.
7- Compare the current value in Ampermeter with the calculated current value.
8- Calculate the voltages on resistor and inductor using the current value (2,6mA).
ER = I.R = $EL = I.XI.$

9- Read the voltage values of resistor and inductor with the AC Voltmeter. Compare these values with the ones we calculated.
10- Calculate the circuit voltage using the calculated voltage values (ER and EL). Compare the result with the voltage (E=3,5V) that you applied to the circuit.
$E^2 = ER^2 + EL^2$
11- Draw the phasor diagram of the circuit and the impedance triangle.
Figure 16.6
12- Calculate the power factor of the circuit, active power dissipated by the circuit and the phase angle.
$Cos\phi = \frac{R}{Z}$ =
$P = E.I.Cos\phi$

EXPERIMENT 17.2

EXAMINATION OF RC SERIES AC CIRCUIT

REQUIRED MATERIAL:

- 1- Function Generator
- **2-** Oscilloscope (**two channeled**)
- 3- AC voltmeter
- **4-** AC ampermeter
- **5-** Y-0016/01AC module
- 6- Enough connection cable

THE EXPERIMENT

Adjust the terminal of the function generator to sine, peak to peak value to Epp=10Volt and frequency to F=1KHz. Connect the Y-0016/01AC module to its place. Short-circuit the **J2.** Make the circuit connections as in the figure 16.11. Apply the power to the circuit.

Figure 16.11

1- Why is the **J2** points short-circuited?

the oscilloscope?

2-	What	can	be said	about	the	circuit	looking	at the	vector	diagram	on

3- Short circuit the CH2 points so that the " R1 " resistor will not affect the circuit. Calculate the total resistance of the circuit.
4- Calculate the capacitive reactance of the capacitor.
5- Calculate the circuit impedance.
$Z^2 = RT^2 + XC^2$
6- Calculate the circuit current.
7- Compare the current value in Ampermeter with the calculated current value.
8- Calculate the voltages on resistor and capacitor using the current value (1,86mA)

9- Read the voltage values of resistor and capacitor with the AC Voltmeter. Compare these values with the ones we calculated. 10- Calculate the circuit voltage using the calculated voltage values (ER and EL). Compare the result with the voltage (E=3,5V) that you applied to the circuit. $E^2 = ER^2 + EC^2$ **11-** Draw the phasor diagram of the circuit and the impedance triangle. **Figure 16.12** 12- Calculate the power factor of the circuit, active power dissipated by the circuit and the phase angle. $Cos\phi = \frac{R}{Z} =$

 $P = E.I.Cos\phi$

EXPERIMENT 17.3

EXAMINATION OF RLC SERIES AC CIRCUIT

REQUIRED MATERIALS:

- 1- Function Generator
- 2- AC voltmeter
- **3-** AC ampermeter
- **4-** Y-0016/01AC module
- **5-** Enough connection cable

THE EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to **Epp=**10Volt and frequency to **F**=1KHz. Connect the Y-0016/01AC module to its place. Make the circuit connections as in the figure 16.17 Apply the power to the circuit.

Figure 16.17

1- Short-circuit the CH2 points so that the "**R1**" resistor will not effect the circuit. Calculate the total resistance.

2- Calculate the inductive reactance of the inductor.

 $XL = 2\pi FL$

3- Calculate the capacitive reactance of the capacitor.

 $XC = \frac{1}{2\pi FC} = \frac{1}{1}$

4- Calculate the circuit impedance.

XC > XL

$$XF = XC - XL =$$

$$Z^2 = RT^2 + XF^2$$

5- Calculate the circuit current.

6- Compare the current value in Ampermeter with the calculated current value.

7- Calculate the voltages on resistor, inductor and capacitor using the current value(**2,32mA**)

ER = I.R =

EL = I.XL =

EC = I.XC

8- Read the voltage values of resistor, inductor and capacitor with the AC Voltmeter. Compare these values with the ones we calculated.
• Calculate the circuit voltage using the calculated voltage values (ED

9- Calculate the circuit voltage using the calculated voltage values (ER, EC and EL). Compare the result with the voltage (**E=3,5V**) that you applied to the circuit

10- Draw the phasor diagram of the circuit and the impedance triangle.

Figure 16.18

11- Calculate the power factor of the circuit, active power dissipated by the circuit and the phase angle.

$$Cos\phi = \frac{R}{Z} =$$

$$P = E.I.Cos\phi$$