ELECTROTECHNICH LAB.

PART 5 EXPERIMENTS

Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ

Arş. Gör. Ufuk ŞANVER

İSTANBUL COMMERCE UNIVERSITY

Contents

EXPERIMENT 18.1	
EXAMINATION OF RL PARALLEL AC CIRCUIT	
EXPERIMENT 18.2	16
EXAMINATION OF RC PARALLEL AC CIRCUIT	16
EXPERIMENT 18.3	19
EXAMINATION OF RLC PARALLEL AC CIRCUIT	19

EXPERIMENT 18.1 EXAMINATION OF RL PARALLEL AC CIRCUIT

REQUIRED MATERIAL:

- **1-** Function Generator
- 2- Oscilloscope (two channeled)
- **3-** three AC ampermeters
- **4-** Y-0016/01AC module
- **5-** Enough connection cable

THE EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to **Epp=**10Volt and frequency to **F**=1KHz. Connect the Y-0016/01AC module to its place. Make the circuit connections as in the figure 16.23. Apply the power to the circuit.

Figure 16.23

1- What can be said about the circuit looking at the vector diagram on the oscilloscope?

2- Short-circuit the CH2 points so that ``R1'' resistor will not effect the circuit.

3- Calculate the inductive reactance of the inductor

 $XL = 2\pi FL$

4- Calculate the circuit current and currents passing through the legs of circuit.

$$IR = \frac{E}{R} =$$

$$IL = \frac{E}{XL} =$$

$$I = \sqrt{IR^{2} + IL^{2}}$$

$$I =$$

5- Read the current values shown by Ampermeters. Compare the current values in Ampermeters with the calculated current values.

6- Draw the phasor diagram of the circuit.

Figure 16.24

7- Find the circuit impedance using the values in measurement devices.

$$Z = \frac{E}{I} =$$

8- Find the power coefficient and phase angle of the circuit.

$$Cos \varphi = rac{IR}{I} = \varphi =$$

9- Calculate the active power dissipated using the values in measurement devices.

 $P = E.I.Cos\phi$ P =

EXPERIMENT 18.2 EXAMINATION OF RC PARALLEL AC CIRCUIT

REQUIRED MATERIAL:

- **1-** Function Generator
- 2- Oscilloscope (two channeled)
- **3-** three AC ampermeters
- **4-** Y-0016/01AC module
- **5-** Enough connection cable

THE EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to **Epp=**10Volt and frequency to **F**=1KHz. Connect the Y-0016/01AC module to its place. Make the circuit connections as in the figure 16.28. Apply the power to the circuit.

Figure 16.28

1- What can be said about the circuit looking at the vector diagram on the oscilloscope?

2- Short-circuit the CH2 points so that ``R1'' resistor will not affect the circuit.

3- Calculate the capacitive reactance of the capacitor.

$$XC = \frac{1}{2\pi FC}$$
$$XC =$$

4- Calculate the circuit current and currents passing through the legs of circuit

$$IR = \frac{E}{R} =$$

$$IL = \frac{E}{XC} =$$

$$I = \sqrt{IR^{2}} + IC^{2}$$

$$I =$$

5- Read the current values shown by Ampermeters. Compare the current values in Ampermeters with the calculated current values.

6- Draw the phasor diagram of the circuit.

Figure 16.29

7- Find the circuit impedance using the values in measurement devices.

$$Z = \frac{E}{I} =$$

8- Find the power coefficient and phase angle of the circuit

$$Cos \varphi = rac{IR}{I} = \varphi =$$

9- Calculate the active power dissipated

$$P = E.I.Cos\varphi$$
$$P =$$

EXPERIMENT 18.3 EXAMINATION OF RLC PARALLEL AC CIRCUIT

REQUIRED MATERIAL:

- **1-** Function Generator
- **2-** Four AC ampermeters
- **3-** Y-0016/01AC module
- 4- Enough connection cable

THE EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to **Epp=**10Volt and frequency to **F**=1KHz. Connect the Y-0016/01AC module to its place. Make the circuit connections as in the figure 16.33. Apply the power to the circuit.

Figure 16.33

1- Short-circuit the CH2 points so that ``R1'' resistor will not affect the circuit.

2- Calculate the inductive reactance of the inductor

$XL = 2\pi FL$		
XL =		

$$XC = \frac{1}{2\pi FC} =$$

4- Calculate the circuit current and currents passing through the legs of circuit.

$IR = \frac{E}{R} =$	
$IL = \frac{E}{XL} =$	
$IC = \frac{E}{XC} =$	
IF = IL - IC =	
$I = \sqrt{IR^2 + IF^2}$	
I =	

5- Read the current values shown by Ampermeters. Compare the current values in Ampermeters with the calculated current values.

6- Draw the phasor diagram of the circuit.

Figure 16.34

7- Find the circuit impedance using the values in measurement devices.

$$Z = \frac{E}{I} =$$

8- Calculate the power coefficient and the phase angle.

$$Cos \varphi = rac{IR}{I} = \varphi =$$

9- Find the power coefficient and phase angle of the circuit.

 $P = E.I.Cos\phi$ P =