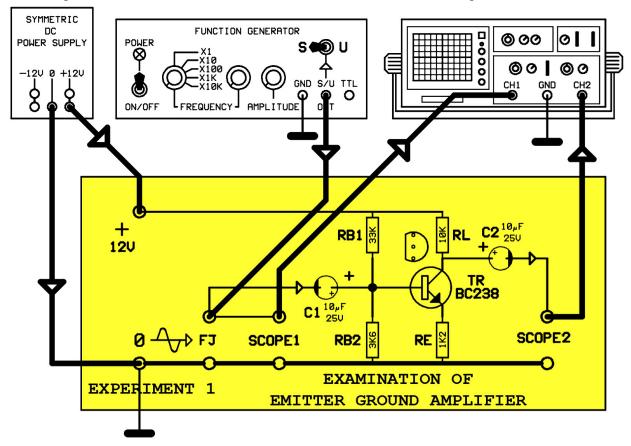
ELECTRONICS LAB.

PART 5 EXPERIMENTS

Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER

İSTANBUL COMMERCE UNIVERSITY

Contents


EXPERIMENT: 5.1	2
EXAMINATION OF EMITTER GROUND AMPLIFIER	2
EXPERIMENT: 5.2	
EXAMINATION OF BASE GROUND AMPLIFIER	
EXPERIMENT: 5.3	_
EXAMINATION OF COLLECTOR GROUND AMPLIFIER	

EXPERIMENT: 5.1

EXAMINATION OF EMITTER GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug the Y-0016/009 module. Make the circuit connections as in figure 14.5

Figure 14.5

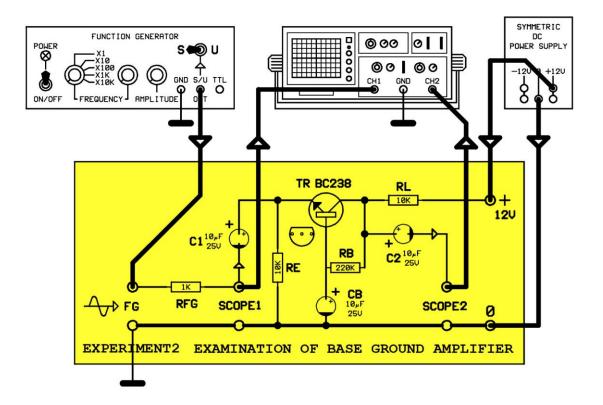
- 1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left).
- **2-** Adjust the output waveform to sine, frequency to 1KHz and amplitude to peak to peak **Vipp**=100mV
- **3-** See the input and output signals at oscilloscope. What is the phase relation between input and output signals?

4-	Measure the	output signa	al amplitude	(Vopp). (Calculate the	circuit gain (A).
		1 0	1	\ II/		0 \ /

$$A = \frac{Vo_{_{PP}}}{Vi_{_{PP}}} =$$

5- Write the properties of emitter ground amplifier.

a-	Input impedance	
u-	тири ипрешинее	


- **b-** Output impedance
- c- Voltage gain
- d- Current gain
- e- Power gain

EXPERIMENT: 5.2

EXAMINATION OF BASE GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug the Y-0016/009 module. Make the circuit connections as in figure 14.7

Figure 14.7

- 1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left). RFG resistor is used to prevent the function generator's short-circuiting because input impedance of base ground amplifier is too low.
- **2-** Adjust the output signal to sine wave at point scope1, frequency to 1KHz and amplitude to peak to peak **Vipp**=10mV. Apply power to the circuit.
- **3-** See the input and output signals displayed by oscilloscope. What is the phase relation between input and output signals?

4-	Measure the o	output signal	amplitude	(Vopp).	Calculate the	circuit g	gain (A).
----	---------------	---------------	-----------	---------	---------------	-----------	-----------

Peak to peak output signal amplitude:

Vopp=

Gain is the ratio of output voltage to input voltage.

Gain:

$$A = \frac{Vo_{PP}}{Vi_{PP}} =$$

5-Write the properties of base ground amplifier.

- a- Input impedance
- **b-** Output impedance
- *c* Voltage gain
- d- Current gain
- e- Power gain

EXPERIMENT: 5.3

EXAMINATION OF COLLECTOR GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug Y-0016/009 module. Make the circuit connections as in figure 14.9

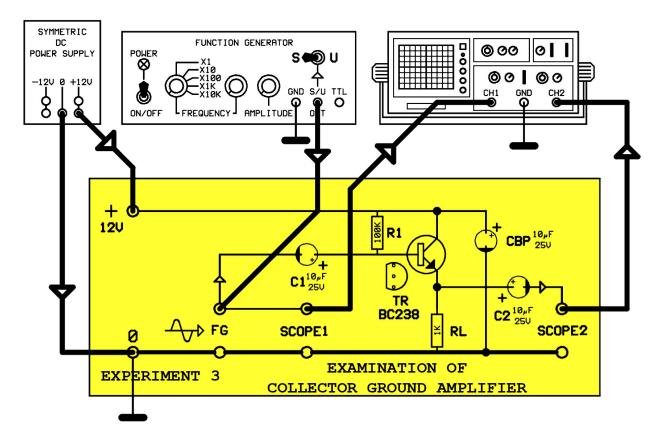


Figure 14.9

- 1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left). Apply power to the circuit.
- **2-** Adjust the output signal to sine wave, frequency to 1KHz and amplitude to peak to peak **Vipp=**1V.
- **3-** See the input and output signals displayed by oscilloscope. What is the phase relation between input and output signals

Output signal amplitude is a little smaller than the input. Peak to peak output signal is:

Vopp=

Gain is the ratio of output voltage to input voltage.

Gain:

$$A = \frac{VoPP}{ViPP} =$$

5-Write the properties of collector ground amplifier

- a- Input impedance
- **b-** Output impedance
- c- Voltage gain
- **d-** Current gain
- e- Power gain