# **ELECTRONICS LAB.**

# **PART 9 EXPERIMENTS**

Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER

**ISTANBUL COMMERCE UNIVERSITY** 

## Contents

| EXPERIMENT 9.1                             | 2        |
|--------------------------------------------|----------|
| EXAMINATION OF RC PHASE SHIFT OSCILLATOR   |          |
| EXPERIMENT: 9.2                            | 3        |
| EXAMINATION OF LC OSCILLATOR               | . 3      |
| EXPERIMENT 9.3                             | 4        |
| EXAMINATION OF PARALLEL HARTLEY OSCILLATOR |          |
| EXPERIMENT 9.4                             | 5        |
| EXAMINATION OF COLPITTS OSCILLATOR         | . 5      |
| EXPERIMENTS 9.5                            | <i>6</i> |
| EXAMINATION OF CRYSTAL OSCILLATOR          | . 6      |
| EXPERIMENT 9.6                             | 7        |
| EXAMINATION OF WIEN BRIDGE OSCILLATOR      |          |

#### **EXAMINATION OF RC PHASE SHIFT OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

Plug the Y-0016/014 module. Make the circuit connections as in figure 18.6.

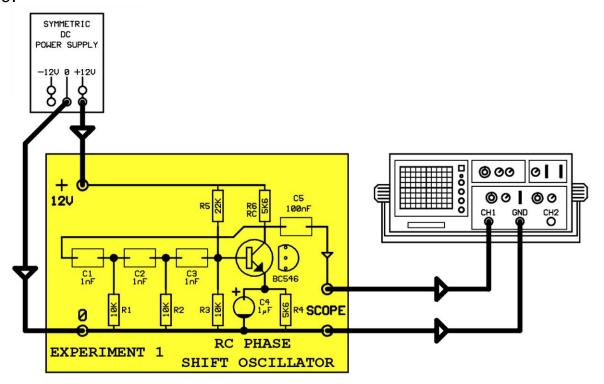



Figure 18.6

**1-** Apply energy to circuit. See the frequency at output of oscillator. What are the form, frequency and amplitude of signal?

Form of signal is ......, its frequency is ......KHz and amplitude is peak to peak **Vopp=**.....Volt

**2-** According to component values, calculate the circuit frequency. Compare it with the value you see at oscilloscope.

$$Fo = \frac{1}{4,44.\pi.R.C}$$

$$Fo = \dots KHz$$

#### **EXAMINATION OF LC OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

Plug the Y-0016/014 module. Make the circuit connections as in figure  $18.8\,$ 

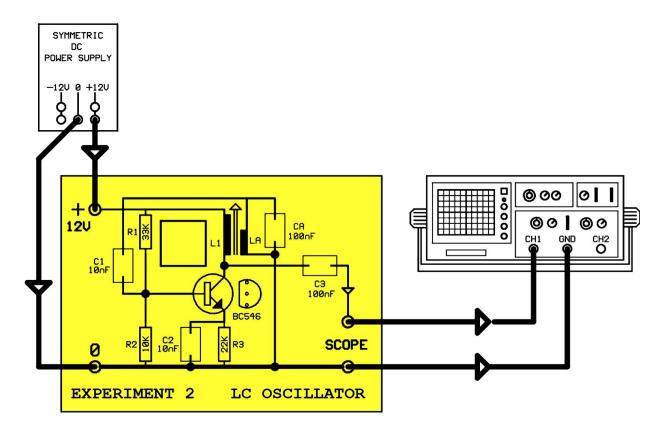
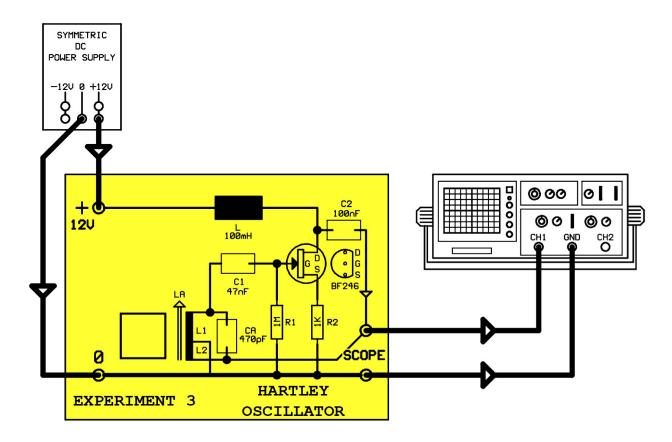



Figure 18.8

**1-** Apply energy to circuit. Define the output signal of oscilloscope.

Output signal is .....


**2-** Adjust the core of transformator with the help of a screwdriver carefully. Calculate the frequency band between which the oscillation is carried out.

Oscillator makes oscillation between frequency values of ......KHz and .....KHz.

#### **EXAMINATION OF PARALLEL HARTLEY OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

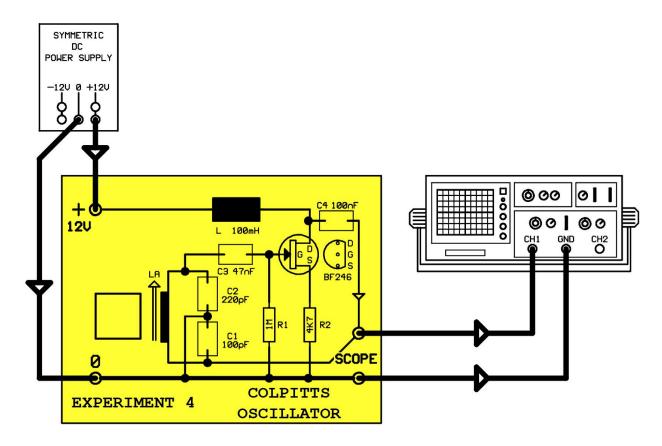
Plug the Y-0016/014 module. Make the circuit connections as in figure 18.11



**Figure 18.11** 

**1-** Apply energy to circuit. Define the output signal of oscilloscope.

Output signal is .....


**2-** Adjust the core of transformator with the help of a screwdriver carefully. Calculate the frequency band between which the oscillation is carried out?

Oscillator makes oscillation between frequency values of ......KHz and .....KHz.

#### **EXAMINATION OF COLPITTS OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

Plug the Y-0016/014 module. Make the circuit connections as in figure 18.13



**Figure 18.13** 

1- Apply energy to circuit. Define the output signal of oscilloscope NOTE: If the LA coil is out of operating limits there will not be oscillation. In that situation, adjust the core of coil with a screwdriver carefully.

| Output signal is  | Oscillator | makes | oscillation | between | frequency |
|-------------------|------------|-------|-------------|---------|-----------|
| values ofKHz andk | Hz.        |       |             |         |           |

**2-** Adjust the core of transformer with the help of a screwdriver carefully. Does the frequency of output signal change? Why?

| Frequency          | of    | output        | signal  | because |                                        |
|--------------------|-------|---------------|---------|---------|----------------------------------------|
| Oscillation frague | ncv i | <br>s determi | ined by |         | ······································ |
| Oscillation nequel | icy i | 3 ucteriii    | nea by  |         |                                        |

#### **EXAMINATION OF CRYSTAL OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

Plug the Y-0016/014 module. Make the circuit connections as in figure 18.16




Figure 18.16

**1-** Apply energy to circuit. Define the output signal.

Output signal is .....

**2-** Measure the oscillation frequency. Why is it at that value, explain?

Frequency of output signal is ......KHz.
Frequency of crystal is .....KHz.
Frequency of crystal is equal to .....

**3-** Measure the output signal amplitude.

Output signal amplitude is between peak to peak  $Vopp \cong \dots V$  - V.

#### **EXAMINATION OF WIEN BRIDGE OSCILLATOR**

#### **EXPERIMENTAL PROCEDURE:**

Plug the Y-0016/014 module. Make the circuit connections as in figure 18.18

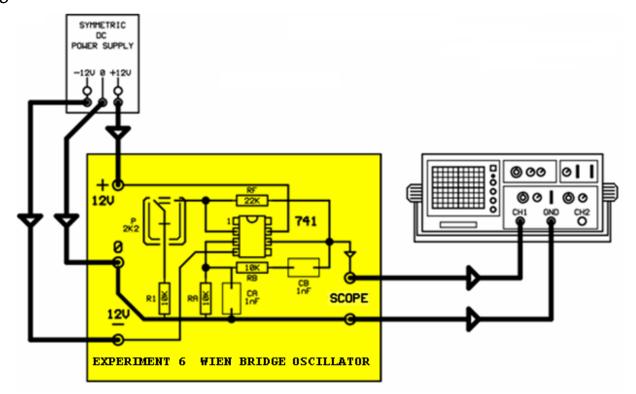



Figure 18.18

**1-** Apply energy to circuit. Define the output signal

NOTE: If there is interruption of negative or positive peak to peak values of output signal, adjust the P trimpot with a screwdriver and make sure that the signal is smooth.

| Output signal is                                           |  |
|------------------------------------------------------------|--|
| <b>2-</b> Does the P trimpot affect output amplitude? Why? |  |
| · · · · · · · · · · · · · · · · · · ·                      |  |
|                                                            |  |
|                                                            |  |

| Output signal frequency is <b>Fo</b> = | KHz. |
|----------------------------------------|------|
| output orginal in equality is 1 c imi  |      |
|                                        |      |
|                                        |      |

**3-** Measure the output signal frequency.

**4-** RA=RB=10K and CA=CB=1nF, so, calculate the oscillation frequency. Compare the result with the value at oscilloscope.

Mathematically oscillation frequency:  $Fo = \frac{1}{2\pi RC} = F0 = \frac{1}{2\pi RC}$   $FO = \frac{1}{2\pi RC} = F0 = \frac{1}{2\pi RC}$ Two results are ......