PART 3

Linear Applications of Op-Amp

- 1. Analyzing Operational Amplifier Operating As Summing Amplifier (2.3)
- 2. Analyzing Operational Amplifier Operating As Differential Amplifier (2.4)
- 3. Analyzing Operational Amplifier Operating As Differentiator (2.5)
- 4. Analyzing Operational Amplifier Operating As Integrator (2.6)

MODULE Y-0014/02

ANALYZING OPERATIONAL AMPLIFIER OPERATING AS SUMMING AMPLIFIER

EXPERIMENTAL PROCEDURE:

Connect the circuit as shown in the Figure.

In the experiment, one of the voltages (**VM1**) is constant and the other one (**VM2**) is variable.

 Apply power to the circuit. Measure the voltage VM1. Take note of the voltage VM1 on Table 1 in each step. Adjust the voltage VM2 by using the potentiometer P in each step. Take note of the output voltage.

VM1 (Volt)	VM2 (Volt)	Vo (Volt)		

ladie.

- 2- Does the summing circuit sum the input voltages?
- **3-** Does the summing circuit operate as inverting amplifier?

4- Calculate the gain of the circuit.

In the circuit RF=	, R1=	, R2=	
Gain =			

5- Open the short circuit between the points O-A. Short the points O-B. Take note of the output voltage for the given voltage values VM1 and VM2 on Table 2.

Table 2	
---------	--

VM1 (Volt)	VM2 (Volt)	Vo (Volt)

6- Calculate the gain of the circuit.

In the circuit RF= , R1= , R2= . **Gain (A) =**

7- Did the summing circuit perform summation in each step?

(Theoric) Vo = (V1+V2).A =

(Measurement)Vo =

ANALYZING OPERATIONAL AMPLIFIER OPERATING AS DIFFERENTIAL AMPLIFIER

EXPERIMENTAL PROCEDURE:

Connect the circuit as shown in the figure.

In the experiment, one of the voltages (**VM1**) is constant and the other one (**VM2**) is variable.

 Apply power to the circuit. Measure the voltage VM1. Take note of the voltage VM1 on Table 1 in each step. Adjust the voltage VM2 by using the potentiometer P in each step. Take note of the output voltage.

VM1 (Volts)	VM2 (Volts)	Vo (Volts)

Table 1

2- Does the differential circuit perform subtraction?

3- Calculate the gain of the circuit.

Since, R1= , R2= , R3= , R4= **A (Gain) =**

4- How is the sign of the output determined?

5- For the input voltages given step 1, calculate the output voltage assuming R1=R2=10K and R3=RF=20K

.

$$Vo = -(V1 - V2) \cdot \frac{RF}{R1} =$$

ANALYZING OPERATIONAL AMPLIFIER OPERATING AS DIFFERENTIATOR

EXPERIMENTAL PROCEDURE:

Connect the circuit as shown in the figure.

- **1-** Apply power to the circuit. Set the output of the function generator to triangular wave with frequency 1 KHz and amplitude 1V peak to peak by using scope1.
- **2-** Draw the input and output signals on the oscilloscope screen. Measure the amplitude of the output signal.

3- How does the output signal change with the input signal?

4- Set the frequency of the input signal to 5KHz. Measure the amplitude of the output signal. Explain the reason.

5- Calculate the cut-off frequency (**Fc**) of the circuit.

$$Fc = \frac{1}{2}\pi .R1.C =$$

6- Apply a sinusoidal signal to the input with frequency 1 KHz and amplitude 1Vpp. Define the output signal.

ANALYZING OPERATIONAL AMPLIFIER OPERATING AS INTEGRATOR

EXPERIMENTAL PROCEDURE:

Connect the circuit as shown in the Figure.

- **1-** Apply power to the circuit. Set the output of the function generator to square wave with frequency 1 KHz and amplitude 1V peak to peak by using scope1.
- **2-** Draw the input and output signals on the oscilloscope screen. Measure the amplitude of the output signal.

Vopp = .

3- How does the output signal change with the input signal?

4- Set the frequency of the input signal to 5KHz. Measure the amplitude of the output signal.

5- Calculate the cut-off frequency of the circuit.

$$Fc = \frac{1}{2\pi . RF.C} =$$

6- Apply a sinusoidal signal to the input with frequency 1 KHz and amplitude 1Vpp. Define the output signal.