İstanbul Ticaret Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği İngilizce Lisans Programı Prepared by: Prof. Dr. MEHMET HAKAN HOCAOĞLU Preparation Date: 20.10.2022 16:58:12 | Course | | Torm | m Theory | | Cradit | ECTS | |--------------------|--------|------------------------|----------|---|--------|------| | Name Code | | lerm | | | Credit | | | Graduation Project | ENG401 | 2021-2022 Bahar Dönemi | 0 | 4 | 2 | 10 | | Course
Duration | 2022-02-07 - 2022-06-19 | |---|--| | Course
Language | İngilizce | | Course Type | Zorunlu | | Course Level | Lisans | | Instructors | Prof. Dr. MEHMET HAKAN HOCAOĞLU
Dr. Öğr. Üyesi Vedat TAVAS
Öğr. Gör. Cengiz RİVA
Doç. Dr. FATİH ÜSTÜNER
Prof. Dr. NEDİM TUTKUN
Doç. Dr. Serhan YARKAN | | Contact | , mhhocaoglu@ticaret.edu.tr Dahili: 3343 Oda: B-307 Birim: Elektrik-Elektronik Mühendisliği İngilizce Lisans Programı Görev: Öğretim Üyesi, vtavas@ticaret.edu.tr , criva@ticaret.edu.tr , fustuner@ticaret.edu.tr , ntutkun@ticaret.edu.tr Dahili: 3334 Oda: B-303 Birim: Elektrik-Elektronik Mühendisliği İngilizce Lisans Programı Görev: Öğretim Üyesi, syarkan@ticaret.edu.tr | | Objective of the Course | Course aims at devoleping skills of students to define, analyze, generate solutions to engineering problems innovatively in a sustainable manner regardless of types of problems. | | Course
Learning
Outcomes
(CLO) | Demonstrate self regulation skills. Communicate effectively. Working in a team effectively as team leader, and as individual. Solve engineering problems innovatively, creatively and in sustainable manner. Produce quality work and engineering designs and communicate results effectively using modern engineering tools. Demonstrate Innovative learning culture and Lifelogn learning skills. | | Teaching
Methods | Presentation | | Course
Content
(Brief) | Introduction to active learning: teamwork, team dynamics, team norms and communications, effective meetings, quality evaluation. Innovative/creative problem solving skills: problem definition, generating solutions, selection of solutions, heuristics, selection strategies, implementation, evaluation. Learning levels and degree of learning. Etique decisions, Work and design notebooks, Reverse engineering and design projects. | | Prerequisite(s) | | |-----------------|--| | / Co- | | | requisites(s) | | ### **Weekly Course Outline** | · | |---| | Time management, meeting class expectations and taking responsibilites regarding ethical and professional beaviour, demonstrate academic integrity and behavior. | | Apply techniques of engineering journal, signalling to facilitator, process control and active learning behaviour. | | Demonsrate the skills for defining and meeting quality expectations of customers. | | Develop skills for preparing team agenda, defining and following team norms. Develop teaming tools such as Process control. | | Using tools such as Brain storming, Boggle method, Affinity processes, deployment diagram, multivoting and priority building tools. | | Problem solving heuristics, potential problem, developing creative/innovative problem solving skills and strategies. | | Using creative problem solving techniques such as problem identification, present state/desired state diagrams, Dunker diagram, statement/restatement, KT problem analysis, and other techniques in a design project. | | Osborn's control list,random stimulation, fishbone diagram techniques for innovative idea generation techniques. Using them in design project. | | Understand situation analysis, problem analysis, decision analysis and potential problem analysis techniques and using them in design project. | | Gantt chart, deployment diagrams and critical path analysis. Using them in design project. | | Ethics subjects, Social, Cultural and Ethics subjects to be used in evaluation of design project. | | Presenting the technical work in written and verbal form by using modern engineering and computer applications. | | Using Control lists, design notebook, engineering journals. | | Submission of the projects | | | | Resources | Textbook | 1. STRATEGIES FOR CREATIVE PROBLEM SOLVING, Fogler, H.S., LeBlanc, S., E.,, 2th Ed., 2007, Prentice Hall PTR ISBN 978-0130082794 2. INTRODUCTION TO ENGINEERING DESIGN, McNeill, B. W., Bellamy, L., Burrows, V. A.,2004 | | |-----------------------|----------------------|--|--| | | Recommended
Books | Other materials | | | Teaching
Equipment | | Note slides provided by the lecturer | | #### **Evaluation System** | Evaluation System | | | | | | | |-------------------------|----------------|--------|--------------|--|--|--| | | Studiess | Number | Contribution | | | | | A ativiandumina | Homework | 0 | 0 | | | | | Activiesduring the term | Presentation | 0 | 0 | | | | | II I | Mid Term Exams | 0 | 0 | | | | | | Project | 0 | 0 | | | | | | Laboratory | 0 | 0 | | | | | | Field Study | 0 | 0 | | | | | | Quiz | 0 | 0 | | | | | Term Project | 0 | 0 | | |----------------------------------|---|-----|--| | Portfolio | 1 | 60 | | | Reports | 0 | 0 | | | Learning Diaries | 0 | 0 | | | Graduate Project | 0 | 0 | | | Seminar | 0 | 0 | | | Others | 0 | 0 | | | Sub Total | 1 | 60 | | | During Term Studies Contribution | | 60 | | | Final Exam Contribution (>40%) | | 40 | | | Total | | 100 | | **Course and Program Learning Outcomes Relationship** | Number | Program Learning Outcomes (PLO) | Course Learning Outcomes (CLO) | | | | | | |--------|---|--------------------------------|------|------|------|------|------| | | | CLO1 | CLO2 | CLO3 | CLO4 | CLO5 | CLO6 | | PLO1 | Basic sciences and Electrical - Electronic Engineering in the field of theoretical and practical knowledge sufficient level wins. | 0 | 0 | 0 | 0 | 0 | 0 | | PLO2 | Theoretical and practical knowledge gained in the field of Electrical and Electronics Engineering uses. | 0 | 0 | 0 | 0 | 0 | 5 | | PLO3 | Experiments in the field of Electrical and Electronics Engineering designs, executes, analyzes the data and interpretations. | 0 | 0 | 0 | 5 | 0 | 0 | | PLO4 | For the problems it encounters in the field of Electrical and Electronics Engineering Selects and applies appropriate analytical methods and modeling techniques. | 0 | 0 | 0 | 4 | 0 | 0 | | PLO5 | A system that is believed to be necessary in the field of Electrical and Electronics Engineering, design components or processes. | 0 | 5 | 0 | 0 | 0 | 0 | | PLO6 | Makes an individual or team work within the discipline and interdisciplinary. | 0 | 0 | 0 | 5 | 0 | 5 | | PLO7 | Makes access to information and research resource for this purpose, use databases and other information resources. | 0 | 0 | 0 | 5 | 0 | 0 | | PLO8 | Lifelong learning is a conscious aware of this requirement. | 5 | 0 | 0 | 0 | 0 | 0 | | PLO9 | Required by the technological innovations of Electrical and Electronics Engineering will follow, predicts that innovations in technology that will be needed, and provides the necessary contributions. | 5 | 0 | 5 | 0 | 0 | 0 | | PLO10 | At least one foreign language oral and written communication skills, wins the best use of this language. | 0 | 0 | 0 | 5 | 5 | 5 | | PLO11 | Professional and scientific achievements of learned knowledge and skills in professional communication have much to transfer them to others. | 0 | 0 | 0 | 0 | 5 | 0 | | PLO12 | Innovative studies in the field of Electrical and Electronics Engineering, field applications, business | 0 | 0 | 0 | 0 | 0 | 5 | and human safety, environmental sensitivity issues have the highest awareness and consciousness. #### **ECTS- Work Load Table** | Activities | Week | Time
(hour) | Total Work
Load | |-----------------------------------|------|----------------|--------------------| | Course Duration | 0 | 0 | 0 | | Out of Classroom Studies Duration | 0 | 0 | 0 | | Homework | 0 | 0 | 0 | | Presentation | 1 | 20 | 20 | | Mid Term Exam | 0 | 0 | 0 | | Project | 0 | 0 | 0 | | Laboratory | 0 | 0 | 0 | | Field Study | 0 | 0 | 0 | | Final Exam | 0 | 0 | 0 | | Quiz | 0 | 0 | 0 | | Term Project | 0 | 0 | 0 | | Portfolio Study | 1 | 60 | 60 | | Report | 2 | 50 | 100 | | Learning Diaries | 0 | 0 | 0 | | Graduation Project | 1 | 40 | 40 | | Seminar | 0 | 0 | 0 | | Other | 0 | 0 | 0 | | Total Work Load | | | | | Total Work Load / 25 | | | | | Course ECTS | | | 10 | # Contribution of the Course to the Field / Vocational Education | Approval | Head of The Department | | |----------|------------------------|--| | | | |